Wavelet Based Spatial Scaling of Coupled Reaction Diffusion Fields
نویسندگان
چکیده
Multiscale schemes for transferring information from fine to coarse scales are typically based on homogenization techniques. Such schemes smooth the fine scale features of the underlying fields, often resulting in the inability to accurately retain the fine scale correlations. In addition, higher-order statistical moments (beyond mean) of the relevant field variables are not necessarily preserved. As a superior alternative to averaging homogenization methods, a wavelet-based scheme for the exchange of information between a reactive and diffusive field in the context of multiscale reaction-diffusion problems is proposed and analyzed. The scheme is shown to be efficient in passing information along scales, from fine to coarse, i.e., upscaling as well as from coarse to fine, i.e., downscaling. It incorporates fine scale statistics (higher-order moments beyond mean), mainly due to the capability of wavelets to represent fields hierarchically. Critical to the success of the scheme is the identification of dominant scales containing the majority of the useful information. The dominant scales in effect specify the coarsest resolution possible. The scheme is applied in detail to the analysis of a diffusive system with a chemically reacting boundary. Reactions are simulated using kinetic Monte Carlo (kMC) and diffusion is solved by finite differences (FDs). Spatial scale differences are present at the interface of the kMC sites and the diffusion grid. The computational efficiency of the scheme is compared to results obtained by averaging homogenization, and to results from a benchmark scheme that ensures spatial scale parity between kMC and FD.
منابع مشابه
Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملA new 2D block ordering system for wavelet-based multi-resolution up-scaling
A complete and accurate analysis of the complex spatial structure of heterogeneous hydrocarbon reservoirs requires detailed geological models, i.e. fine resolution models. Due to the high computational cost of simulating such models, single resolution up-scaling techniques are commonly used to reduce the volume of the simulated models at the expense of losing the precision. Several multi-scale ...
متن کاملWavelet-based spatial and temporal multiscaling: Bridging the atomistic and continuum space and time scales
A wavelet-based multiscale methodology is presented that naturally addresses time scaling in addition to spatial scaling. The method combines recently developed atomistic-continuum models and wavelet analysis. An atomistic one-dimensional harmonic crystal is coupled to a one-dimensional continuum. The methodology is illustrated through analysis of the dispersion relation, which is highly disper...
متن کاملReply to ‘ ‘ Comment on upscaling geochemical reaction rates using pore - scale network modeling ’ ’ by Peter C . Lichtner and Qinjun Kang
Our paper ‘‘Upscaling geochemical reaction rates using pore-scale network modeling’’ [1] presents a novel application of pore-scale network modeling to upscale mineral dissolution and precipitation reaction rates from the pore scale to the continuum scale, and demonstrates the methodology by analyzing the scaling behavior of anorthite and kaolinite reaction kinetics under conditions related to ...
متن کاملThe role of a delay time on the spatial structure of chaotically advected reactive scalars
The stationary-state spatial structure of reacting scalar fields, chaotically advected by a two-dimensional large-scale flow, is examined for the case for which the reaction equations contain delay terms. Previous theoretical investigations have shown that, in the absence of delay terms and in a regime where diffusion can be neglected (large Péclet number), the emergent spatial structures are f...
متن کامل